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Architecture Design for Image Tasks

Innovations: Deeper networks, auxiliary classifiers, skip connections,
bottlenecks, convolution stacking, global average pooling and many more

Images taken from Simone Bianco et al. “Benchmark Analysis of Representative Deep Neural Network Architectures”. In: IEEE Access 6 (2018),
pp. 64270–64277, Christian Szegedy et al. “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning”. In: Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA.. 2017, pp. 4278–4284
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Neural Architecture Search
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Tutorial Outline

Part 1

I Formal Definition of NAS and NASNet search space
I One-shot techniques in NAS

I Overview
I Shortcomings
I Once-for-All Network

Part 2
I Effective NAS with transfer learning approaches based on

I Transfer NAS optimizers
I Few-Shot NAS optimizers
I Learning Curve Ranking

Martin Wistuba, Tejaswini Pedapati, IBM Research

03 February 2021 3 / 92



Efficient Neural Architecture Search Introduction

Problem Definition

Machine Learning Problem

Λ (α, d) = arg min
mα,θ∈Mα

L (mα,θ, dtrain) +R (θ) . (1)

I m - machine learning model

I α - neural architecture

I θ - model parameters

I d - dataset

NAS Problem

α∗ = arg max
α∈A

O (Λ (α, dtrain) , dvalid) = arg max
α∈A

f (α) . (2)

I f - response function I A - search space
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Search Space

I Neural architecture search space: subspace of all possible neural
architectures.

I The limitation to a subspace allows for considering
I human expert knowledge,
I specific task (e.g. mobile architectures) and
I reduces the search time and improves the solutions.

I We distinguish two types of search spaces:
I global search space
I cell-based search space
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NASNet Search Space

Architectures from a cell-based search space are build by stacking few cells
with the same topology.
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NASNet Search Space

Structure of a cell.
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Transferring Architectures

Architectures from cell-based search spaces allow for easy transferability
across different datasets.
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NAS Optimizers
We distinguish several methods that maximize the response function:
I Reinforcement learning: learn to sample α that maximize f .
I Evolutionary algorithms: evolve α that maximize f .
I Surrogate model-based optimization: approximate f by f̂ and use

it to maximize f .
I One-shot architecture search: learn one model and use it to max f .
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One-Shot Architecture Search

Until now,

I the candidate architecture is trained from scratch to obtain validation
accuracy

I Previously trained candidate architectures’ weights were not reused.

To overcome this, in one-shot architecture search the

I Entire search space is a directed acyclic graph - SuperNet

I Candidate architecture α is sampled from SuperNet

I The weights of all the operations are shared
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One-Shot Architecture Search
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One-Shot Architecture Search

I Cross-entropy loss of α is computed on a minibatch of training data

I SuperNet parameters θ are updated using the gradients from the
model α.

I Accelerated the search from 360 GPU days to 0.32 GPU days.

I Best architecture obtained by NAS is again trained from scratch

Martin Wistuba, Tejaswini Pedapati, IBM Research
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One-Shot Architecture Search

Sample Strategies

I Reinforcement learning (Pham et al.)

I Surrogate model-based optimization (Luo et al.)

I Learn a parameterized distribution (Casale et al.)

I Random sampling (Bender et al.)
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Efficient Neural Architecture Search (ENAS)
Uses LSTM controller trained using RL to predict candidate network

Hieu Pham et al. “Efficient Neural Architecture Search via Parameter Sharing”. In:
Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. 2018, pp. 4092–4101
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Efficient Neural Architecture Search (ENAS)

Algorithm 1 ENAS

Input: Controller’s policy parameters ω, SuperNet’s parameters θ,
for every iteration do

Controller’s policy samples candidate model α
Compute cross-entropy loss OθEα on m for a mini-batch of training
data
Fix ω and perform SGD on θ using OθEα
Fix θ and update ω to maximize expected reward on validation data.

Martin Wistuba, Tejaswini Pedapati, IBM Research
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Differentiable Architecture Search (DARTS)

I In ENAS, choosing operations at every edge is a discrete decision

I DARTS Makes it continuous defining mixed operation

ō(i,j)(x) =
∑

o∈O

exp(α
(i,j)
o )

∑
o′∈O exp(α

(i,j)
o′ )

o(x) (3)

I Architecture α is parameterized by β and network weights θ

I Strength of an operation: exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)

o′ )

I Derive discrete architecture by (1) o(i ,j) = argmaxo∈O α
(i ,j)
o (2)

choose top-k incoming edges

Hanxiao Liu, Karen Simonyan, and Yiming Yang. “DARTS: Differentiable
Architecture Search”. In: Proceedings of the International Conference on Learning
Representations, ICLR 2019, New Orleans, Louisiana, USA. 2019
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Differentiable Architecture Search

o1

o2

o3

+

o1

o2

o3

+

o1

o2

o3

+

o1

o2

o3

+

Relaxation of binary structural parameters α leads to differentiable loss:

min
α(β)∈A

L
(

arg min
mα(β),θ∈Mα(β)

L
(
mα(β),θ, dtrain

)
+R (θ) , dvalid

)
(4)

Martin Wistuba, Tejaswini Pedapati, IBM Research

03 February 2021 17 / 92



Efficient Neural Architecture Search One-Shot Architecture Search Overview

Differentiable Architecture Search

o1

o2

o3

+

o1

o2

o3

+

o1

o2

o3

+

o1

o2

o3

+

Relaxation of binary structural parameters α leads to differentiable loss:

min
α(β)∈A

L
(

arg min
mα(β),θ∈Mα(β)

L
(
mα(β),θ, dtrain

)
+R (θ) , dvalid

)
(4)

Martin Wistuba, Tejaswini Pedapati, IBM Research

03 February 2021 17 / 92



Efficient Neural Architecture Search One-Shot Architecture Search Overview

Differentiable Architecture Search

o1

o2

o3

+

o1

o2

o3

+

o1

o2

o3

+

o1

o2

o3

+

Relaxation of binary structural parameters α leads to differentiable loss:

min
α(β)∈A

L
(

arg min
mα(β),θ∈Mα(β)

L
(
mα(β),θ, dtrain

)
+R (θ) , dvalid

)
(4)

Martin Wistuba, Tejaswini Pedapati, IBM Research

03 February 2021 17 / 92



Efficient Neural Architecture Search One-Shot Architecture Search Overview

Differentiable Architecture Search

o1

o2

o3

+

o1

o2

o3

+

o1

o2

o3

+

o1

o2

o3

+

Relaxation of binary structural parameters α leads to differentiable loss:

min
α(β)∈A

L
(

arg min
mα(β),θ∈Mα(β)

L
(
mα(β),θ, dtrain

)
+R (θ) , dvalid

)
(4)

Martin Wistuba, Tejaswini Pedapati, IBM Research

03 February 2021 17 / 92



Efficient Neural Architecture Search One-Shot Architecture Search Overview

Differentiable Architecture Search

o1

o2

o3

+

o1

o2

o3

+

o1

o2

o3

+

o1

o2

o3

+

Relaxation of binary structural parameters α leads to differentiable loss:

min
α(β)∈A

L
(

arg min
mα(β),θ∈Mα(β)

L
(
mα(β),θ, dtrain

)
+R (θ) , dvalid

)
(4)

Martin Wistuba, Tejaswini Pedapati, IBM Research

03 February 2021 17 / 92



Efficient Neural Architecture Search One-Shot Architecture Search Overview

Bi-level optimization

min
α

Lval(θ∗(α), α) (5)

s.t. θ∗(α) = argminθ Ltrain(θ, α) (6)

Algorithm 2 DARTS – Differentiable Architecture Search

Input: A mixed operation ō(i ,j)

1: while not converged do
2: Update architecture α by descending
3: ∇αLval(θ − ξ∇θLtrain(θ, α), α)
4: (ξ = 0 if using first-order approximation)
5: Update weights θ by descending ∇θLtrain(θ, α)
6: Derive the final architecture based on the learned α.

Martin Wistuba, Tejaswini Pedapati, IBM Research
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Pitfalls of DARTS

I All parameters need to be stored in memory.

I DARTS Collapse: Final architectures comprise of too many skip
connections

I Discretization step results in architectures with higher validation loss
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Memory consumption of DARTS

I In DARTS output of an edge is a weighted sum of all the operations∑N
i=1

exp(αi )∑
j exp(αj )

oi (x)

I It requires all possible combinations of the operations to be stored in
memory

I The batch size used to train the SuperNet is small

I Searching on Imagenet takes several days.

Martin Wistuba, Tejaswini Pedapati, IBM Research

03 February 2021 20 / 92



Efficient Neural Architecture Search One-Shot Architecture Search Shortcomings

ProxylessNAS

(1) Update weight parameters

Architecture Parameters
Binary Gate (0:prune, 1:keep)

OUTPUT

α    β    σ  …   δ
1   0   0  …  0 

(2) Update architecture parameters

INPUT

α    β    σ  …   δ
0   1   0  …  0 

update
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POOL 
3x3
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3x3 Identity CONV 
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MIT Red

Trainer Latency 
Model

Direct measurement:
expensive and slow

Latency modeling:
cheap, fast and differentiable
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I Each edge of the SuperNet has N different operations.

I It is equivalent to storing N models in memory

I In ProxylessNAS only one operation is active at a time.

Han Cai, Ligeng Zhu, and Song Han. “ProxylessNAS: Direct Neural Architecture
Search on Target Task and Hardware”. In: Proceedings of the International Conference
on Learning Representations, ICLR 2019, New Orleans, Louisiana, USA. 2019
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ProxylessNAS (cont.)

Use binary gates for each edge:

g = binarize(p1, · · · , pN) =





[1, 0, · · · , 0] with probability p1,

· · ·
[0, 0, · · · , 1] with probability pN .

(7)

mBinary
O (x) =

N∑

i=1

gioi (x) =





o1(x) with probability p1

· · ·
oN(x) with probability pN .

(8)

I Devise it as multiple binary selection tasks

I Requires only 2 paths in memory at any point.

I Able to search on ImageNet in 8.3 days

Martin Wistuba, Tejaswini Pedapati, IBM Research
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PC-DARTS
I Use channel mask Si ,j to sample a 1/K channels each time

I K will determine accuracy vs search cost trade-off

Yuhui Xu et al. “PC-DARTS: Partial Channel Connections for Memory-Efficient
Architecture Search”. In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. 2020

Martin Wistuba, Tejaswini Pedapati, IBM Research
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PC-DARTS (cont.)

f PCi ,j (xi ; Si ,j) =
∑

o∈O

exp
{
αo
i ,j

}

∑
o′∈O exp

{
αo′
i ,j

} · o(Si ,j ∗ xi ) + (1− Si ,j) ∗ xi . (9)

I To account for changing sampled channels, edge normalization is
introduced

I All the edges contributing to the output of node j are assigned weights

xPCj =
∑

i<j

exp {γi ,j}∑
i ′<j exp

{
γi ′,j
} · fi ,j(xi ). (10)

I First train SuperNet for 15 epochs

I Increased batch size stabilizes the training

I The bias of choosing parameter-free operations is less pronounced
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DARTS Collapse

I Skip connections increase as search progresses

I Skip connections make it easier for the SuperNet to train although
they do not boost the accuracy of the final discretized architecture
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The softmax evolution where skip connections gradually become
dominant. Image taken from Chu et al.
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DARTS Collapse

S1: This search space uses a different set of only two operators per edge.

S2: Operated used are {3× 3 SepConv, SkipConnect}.
S3: The set of candidate operations per edge is {3× 3 SepConv,

SkipConnect, Zero}.
S4: The set of candidate operations per edge is {3× 3 SepConv, Noise}.
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DARTS Collapse
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The normal cells standard DARTS finds on spaces S1-S4. Image taken
from Zela et al.
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DARTS Collapse

I Dropout after skip connection as suggested by P-DARTS

I Explicitly limit the number of skip connections: DARTS+

I Experiment done by FairDARTS

Methods Cifar10-Acc

Random (M=2) 97.01 ± 0.24
Random (M=2, MultAdds ≥ 500M) 97.14 ± 0.28

DARTS without skip-connection 96.88 ± 0.18
DARTS (First Order) + Gaussian (cosine decay) 97.12 ± 0.23

DARTS (First Order) 97.00 ± 0.14
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Operation choice no longer mutually exclusive

Apply a sigmoid activation (σ) for each αoi,j , so that each operation can
be switched on or off independently without being suppressed.

ōi,j(x) =
∑

o∈O
σ(αoi,j )o(x). (11)

For the sigmoid of architectural weights to tend towards 0 or 1, additional
loss is used

L0−1 = − 1

N

N∑

i

(σ(αi )− 0.5)2 (12)

Ltotal = Lval(w
∗(α), α) + w0−1L0−1. (13)

The final architecture is discretized by using a threshold (σthreshold)
instead of argmax

Xiangxiang Chu et al. “Fair DARTS: Eliminating Unfair Advantages in Differentiable
Architecture Search”. In: Computer Vision - ECCV 2020 - 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part XV. 2020, pp. 465–480
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DARTS Discretization
I DARTS found a sharp local minima

I Validation loss increased on discretization

I Need to find smoother local minima

Arber Zela et al. “Understanding and Robustifying Differentiable Architecture
Search”. In: 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. 2020
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DARTS Discretization

I RobustDARTS studied the relationship between the eigenvalues of
the Hessian matrix of validation loss O2

α(β)Lvalid and the
generalization error.
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Accuracy Drop During Discretization Step

0.0 0.5 1.0 1.5 2.0
Dominant Eigenvalue

0

10

20

30

Va
lid

at
io

n 
ac

cu
ra

cy
 d

ro
p 

(%
)

Eigenvalues vs. Accuracy Drop
 Spearman corr. coef.: 0.736

I Early stop if λ−αmax(i-k) / λ−αmax(i) < 0.75

I Increase l2 regularization of the network weights

I Apply cutout augmentation along with scheduled drop path
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Anneal and Prune

I Avoid discretization by gradually removing operations from the mixed
operation

I Anneal each operation to make its strength:

Φo(α(i ,j);T ) =
exp(α

(i,j)
o
T )

∑
o′∈O exp(

α
(i,j)

o′
T )

(14)

I Train SuperNet for some grace cycles τ
I For every iteration during bi-level optimization:

I Prune operation if Φo(α(i,j);T ) < threshold
I Update threshold and T

Asaf Noy et al. “ASAP: Architecture Search, Anneal and Prune”. In: The 23rd
International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28
August 2020, Online [Palermo, Sicily, Italy]. 2020, pp. 493–503
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Anneal and Prune

I As SuperNet size reduces, search speed increases

I Searches on CIFAR-10 in 4.8 hours
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Ranking Discrepancy of Weight-Sharing

Experiments are performed on reduced search space of NASBench-101
with 3 operations and 7 nodes.
Accuracy of NAS algorithms on 10 different searches.

NAS algo Mean Acc. Best Acc. Best Rank p(> random)

DARTS 92.21 ± 0.61 93.02 57079 0.24
NAO 92.59 ± 0.59 93.33 19552 0.62
ENAS 91.83 ± 0.42 92.54 96939 0.07

NAO w/o WS 93.08 ± 0.71 94.22 3543 0.92
ENAS w/o WS 93.54 ± 0.45 94.22 4610 0.90

Best Arch 90.93 ± 5.84 95.06

Kaicheng Yu et al. “Evaluating The Search Phase of Neural Architecture Search”.
In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. 2020
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Ranking Discrepancy of Weight-Sharing

I Correlation between the architecture rankings found with and without
weight-sharing for 200 architectures.

#Nodes Kendall’s τ

4 0.441
5 0.314
6 0.214
7 0.195
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Effective Training of One-Shot Architectures

I Operations in one-shot model are subjected to co-adaptation

I Removing operations deteriorates performance

I Add dropout for every operation

I Use a variant of batch-normalization

I Apply L2 normalization only for the selected paths

Gabriel Bender et al. “Understanding and Simplifying One-Shot Architecture
Search”. In: Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. 2018,
pp. 549–558
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Effective Training of One-Shot Architectures
I Sample 2000 architectures

I Train from scratch for 28 epochs
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Once-for-All
I A single network is trained to support versatile architectural

configurations including depth, width, kernel size, and resolution.

I Training is difficult since weights will interfere with each other.

I Progressive shrinking: train the largest network and then fine-tune the
network to support smaller sub-networks.

Han Cai et al. “Once-for-All: Train One Network and Specialize it for Efficient
Deployment”. In: 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. 2020
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Elastic Kernel Size

I Large kernels also serve as kernel for smaller sizes.

I However, forcing the weights to be the same degrades performance.

I Hence, a kernel transformation is used which is shared across the
filter.
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Elastic Depth

I Keep first layers and skip last ones.
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Elastic Width

I Keep the channels with highest L1 norm.
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Search For Model With Constraints

I Learn a surrogate that predicts for an architecture its hardware
requirements and accuracy.

I Training data for surrogate model is obtained by sampling different
architectures from OFA.

I As sampled architectures are already trained, directly evaluate to
obtain validation accuracy and constraint value.

I Surrogate model eliminates evaluation cost

I Use an evolutionary algorithm (Real et al.) to find an architecture
that maximizes accuracy under the given efficiency constraints.
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Results in Different Deployment Scenarios
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Conclusion

I NASNet Search Space
I One-shot model flavour of optimizers

I ENAS and DARTS
I Drawbacks of DARTS
I Problem ranking weight-shared models
I Once for all network
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Motivation for Transfer Learning

I Standard NAS methods solve every problem independently.

I No knowledge is shared between different optimization problem.

I Every search starts from scratch again.

Task 1

RNN

softmax

g (1)

π(1)

Task 2

RNN

softmax

g (2)

π(2)

Task 3

RNN

softmax

g (3)

π(3)

Task 4

RNN

softmax

g (4)

π(4)

Task 5

RNN

softmax

g (5)

π(5)

I Can you reuse the knowledge of source tasks 1 to n for a new
target task n + 1?
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Metadata for Architecture Selection
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I Strong architecture test accuracy correlation across tasks

I A good architecture on one task is very likely a good candidate for
another
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Motivation for Transfer Learning

How can we use metadata to improve Neural Architecture Search?
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Agenda

I We cover various ways of using the metadata (knowledge of source
tasks) to improve NAS on the target task.

I Transfer Neural Architecture Search
I Methods that incorporate transfer learning methods directly into NAS

methods.

I Few-Shot Learning
I Methods that combine NAS with meta-learning.

I Learning Curve Prediction
I Methods that accelerate NAS methods by using early stopping

methods that use transfer learning.
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Trainless Accuracy Predictor Architecture Search

I TAPAS is a zero-shot Neural Architecture Search algorithm

I The best architecture is searched using an evolutionary algorithm

I Instead of training and evaluating each architecture, a surrogate
model is used

I This surrogate model is trained on metadata from similar datasets

Roxana Istrate et al. “TAPAS: Train-less Accuracy Predictor for Architecture
Search”. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence,
(AAAI-19), Honolulu, Hawaii, USA. 2019
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Dataset Similarity

I A dataset is defined by its difficulty (DCN)

I The DCN is defined by the validation accuracy obtained by a fixed
architecture (landmarker)

I Assumption: datasets are similar iff their DCN is similar
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Metadata (LDE)

I 11 publicly available datasets and 8 datasets generated from
ImageNet.

I 800 architectures are trained per datasets.

I Architectures are trained incrementally, adding one layer at a time.
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Surrogate Model

I Surrogate model (TAP) is designed using two stacked LSTMs

I Datasets with DCN similar to given dataset are selected.

I TAP is trained on the corresponding metadata.

I Architecture Encoding and DCN are inputs
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Encoding and Architecture Search
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TAP Predictions
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TAPAS Simulated Search

I TAPAS simulates large-scale evolution of image classifiers algorithm1

I The algorithm took 250 hours

1Esteban Real et al. “Large-Scale Evolution of Image Classifiers”. In: Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017. 2017, pp. 2902–2911
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Transfer Learning with Neural AutoML

I RL controller is pretrained in a
multi-task setting to optimize
architectures for several tasks.

I The task embeddings helps learn
across tasks

Catherine Wong et al. “Transfer Learning with Neural AutoML”. In: Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada. 2018,
pp. 8366–8375
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Transfer Learning with Neural AutoML

I Search space is FFNN models
with embedding layer.

I Some of the Architecture
choices:
I input embedding
I to fine tune or not
I number of hidden layers
I hidden layer sizes
I further hyperparameters

I Controller pretrained on 8 tasks.

I Each optimizer has 500 trials.
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XferNAS

I Warmstart:
I Learn an initial policy which does better than random.

I Minimally invasive:
I Easy integration.
I Converge to the original NAS optimizer’s behavior.

I Solution: share weights across tasks.
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Transfer Network

Martin Wistuba. “XferNAS: Transfer Neural Architecture Search”. In: Machine
Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD
2020, Ghent, Belgium, September 14-18, 2020
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Transfer Network
Core idea is to separate the task-dependent function g (i) into

I a universal function g (u) (warmstart initialization) and

I a task-dependent residual r (i).

Thus,
g (i) = g (u) + r (i) . (15)

Universal
Network

Residual Task Networks

...Residual
Task Net 1

Residual
Task Net n + 1

add

g (u) r (1) r (n+1)

g (i)

Martin Wistuba, Tejaswini Pedapati, IBM Research

03 February 2021 60 / 92



Efficient Neural Architecture Search Transfer Learning for NAS Transfer NAS

XferNAS

Transfer Net

Architecture Autoencoder

a âEncoder
Continuous

Architecture Code
Decoder

f̂ (i)(ha)

Example: Integration into NAO.

I Auto-encoder with surrogate model f̂ that predicts the accuracy of an
architecture based on its code h.

L = αLpred + (1− α)Lrec (16)

I Lpred: error when predicting accuracy.
I Lrec: auto-encoder reconstruction loss.
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XferNAS - Search

Transfer Net

Architecture Autoencoder

a âEncoder
Continuous

Architecture Code
Decoder

f̂ (i)(ha)

1. Solve h?a = arg maxha f̂
(i)(ha).

2. Estimate a? = Decoder(h?a).

3. Evaluate f (i)(a?).

4. Update the prediction model.

5. Go to 1.
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XferNAS vs. NAO

Transfer Net

Architecture Autoencoder

a âEncoder
Continuous

Architecture Code
Decoder

f̂ (i)(ha)

Advantages of XferNAS over NAO:

I Auto-encoder is trained at the beginning of the search.

I Knowledge is leverage to warmstart the search.
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Results on CIFAR-10

Model F #op Err #pms M GPU Days

NASNet-A 32 13 3.41 3.3M 20000 2000
AmoebaNet-B 36 19 3.37 2.8M 27000 3150
AmoebaNet-B (c/o) 128 19 2.13 34.9M 27000 3150
PNAS 48 8 3.41 3.2M 1280 225
NAONet 36 11 3.18 10.6M 1000 200
NAONet (c/o) 128 11 2.11 128M 1000 200

TAPAS / / 6.33 2.7M 1 0
T-NAML / / 3.5 N/A 150 N/A
Best on CIFAR-100 32 19 4.14 6.1M 200 /

XferNASNet 32 19 3.37 4.5M 33 6
XferNASNet (c/o) 32 19 2.70 4.5M 33 6
XferNASNet 64 19 3.11 17.5M 33 6
XferNASNet (c/o) 64 19 2.19 17.5M 33 6
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Martin Wistuba, Tejaswini Pedapati, IBM Research

03 February 2021 64 / 92



Efficient Neural Architecture Search Transfer Learning for NAS Transfer NAS

Results on CIFAR-10

Model F #op Err #pms M GPU Days

NASNet-A 32 13 3.41 3.3M 20000 2000
AmoebaNet-B 36 19 3.37 2.8M 27000 3150
AmoebaNet-B (c/o) 128 19 2.13 34.9M 27000 3150
PNAS 48 8 3.41 3.2M 1280 225
NAONet 36 11 3.18 10.6M 1000 200
NAONet (c/o) 128 11 2.11 128M 1000 200

TAPAS / / 6.33 2.7M 1 0
T-NAML / / 3.5 N/A 150 N/A
Best on CIFAR-100 32 19 4.14 6.1M 200 /

XferNASNet 32 19 3.37 4.5M 33 6
XferNASNet (c/o) 32 19 2.70 4.5M 33 6
XferNASNet 64 19 3.11 17.5M 33 6
XferNASNet (c/o) 64 19 2.19 17.5M 33 6
XferNASNet (c/o) 128 19 1.99 69.5M 33 6

Martin Wistuba, Tejaswini Pedapati, IBM Research

03 February 2021 64 / 92



Efficient Neural Architecture Search Transfer Learning for NAS Transfer NAS

Results on CIFAR-10

Model F #op Err #pms M GPU Days

NASNet-A 32 13 3.41 3.3M 20000 2000
AmoebaNet-B 36 19 3.37 2.8M 27000 3150
AmoebaNet-B (c/o) 128 19 2.13 34.9M 27000 3150
PNAS 48 8 3.41 3.2M 1280 225
NAONet 36 11 3.18 10.6M 1000 200
NAONet (c/o) 128 11 2.11 128M 1000 200

TAPAS / / 6.33 2.7M 1 0
T-NAML / / 3.5 N/A 150 N/A
Best on CIFAR-100 32 19 4.14 6.1M 200 /

XferNASNet 32 19 3.37 4.5M 33 6
XferNASNet (c/o) 32 19 2.70 4.5M 33 6
XferNASNet 64 19 3.11 17.5M 33 6
XferNASNet (c/o) 64 19 2.19 17.5M 33 6
XferNASNet (c/o) 128 19 1.99 69.5M 33 6

Martin Wistuba, Tejaswini Pedapati, IBM Research

03 February 2021 64 / 92



Efficient Neural Architecture Search Transfer Learning for NAS Transfer NAS

Results on CIFAR-10

Model F #op Err #pms M GPU Days

NASNet-A 32 13 3.41 3.3M 20000 2000
AmoebaNet-B 36 19 3.37 2.8M 27000 3150
AmoebaNet-B (c/o) 128 19 2.13 34.9M 27000 3150
PNAS 48 8 3.41 3.2M 1280 225
NAONet 36 11 3.18 10.6M 1000 200
NAONet (c/o) 128 11 2.11 128M 1000 200

TAPAS / / 6.33 2.7M 1 0
T-NAML / / 3.5 N/A 150 N/A
Best on CIFAR-100 32 19 4.14 6.1M 200 /

XferNASNet 32 19 3.37 4.5M 33 6
XferNASNet (c/o) 32 19 2.70 4.5M 33 6
XferNASNet 64 19 3.11 17.5M 33 6
XferNASNet (c/o) 64 19 2.19 17.5M 33 6
XferNASNet (c/o) 128 19 1.99 69.5M 33 6

Martin Wistuba, Tejaswini Pedapati, IBM Research

03 February 2021 64 / 92



Efficient Neural Architecture Search Transfer Learning for NAS Few-Shot NAS

Outline

1. Introduction

2. One-Shot Architecture Search

3. Transfer Learning for NAS
3.1 Transfer NAS
3.2 Few-Shot NAS
3.3 Learning Curve Ranking

4. Conclusions

Martin Wistuba, Tejaswini Pedapati, IBM Research

03 February 2021 65 / 92



Efficient Neural Architecture Search Transfer Learning for NAS Few-Shot NAS

Model-Agnostic Meta-Learning
I Model learns from all the tasks
I Learn a representation that requires only few steps to the optimal

representation for each task
I Performs well for few-shot learning problems

Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning
for Fast Adaptation of Deep Networks”. In: Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017. 2017, pp. 1126–1135
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MAML Algorithm

Algorithm 3 Model-Agnostic Meta-Learning

Input: p(T ): distribution over tasks
Input: β, γ: step size hyperparameters

1: randomly initialize θ
2: while not done do
3: Sample batch of tasks Ti ∼ p(T )
4: for all Ti do
5: θ′i = θ − β∇θLTi (fθ)
6: θ ← θ − γ∇θ

∑
Ti∼p(T ) LTi (fθ′i )
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T-NAS

I Objective: Given multiple tasks, learn a meta-architecture

I Using bilevel optimization combined with MAML to estimate α and
network weights w

I Finetune both parameters for each new task

Dongze Lian et al. “Towards Fast Adaptation of Neural Architectures with Meta
Learning”. In: 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. 2020
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T-NAS

Algorithm 4 T-NAS

Input: p(T ): distribution over tasks
1: randomly initialize α and w
2: while not done do
3: Sample batch of tasks Ti ∼ p(T )
4: for all Ti do
5: Alternately update α′ and w ′

6: Update α and w
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Architecture Evaluation
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Motivation
I Hyperparameter and neural architecture optimization are

computationally expensive.

I Human experts decrease this effort by monitoring the model’s learning
curve and terminate options early that are unlikely to improve over
the currently best solutions.

I With the rise of AutoML, a system that is able to perform this
automatically is desired.

Iterations
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Use Simple Statistics

1. Use median/mean or last value in learning curve to make decision.
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Simple Statistics - Problems

I Late bloomers will not be
considered.

Iterations
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I Quick learners will be
considered unnecessarily long.
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Learning Curves Prediction

I Given a partial learning curve, predict the final performance.

I Use this prediction to estimate p (m > mmax).

I Terminate all runs with p (m > mmax) ≤ δ
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Learning Curves Ranking

I Proposing to predict p (m > mmax) directly.

I Defining the probability that mi is better than mj as

p(mi > mj) = p̂i ,j =
ef (xi )−f (xj )

1 + ef (xi )−f (xj )
. (17)

I Minimize the cross-entropy loss

∑

i ,j

−pi ,j log p̂i ,j − (1− pi ,j) log(1− p̂i ,j) (18)

Martin Wistuba and Tejaswini Pedapati. “Learning to Rank Learning Curves”. In:
Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
12-18 June 2020, Vienna, Austria. 2020
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Modelling f
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Learning Curves Ranking with Transfer Learning

I Learning requires data which is not available.

I Solution 1: Do not learn, only consider given partial learning curve.

I Solution 2: First collect sufficient learning curves and then train your
model.

I Proposal: Use transfer learning to reduce this problem.
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Considering Transfer Learning in our Modelling

To account for transfer learning, an embedding per dataset is added.
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Setup

I Experiments are conducted on five different datasets: CIFAR-10,
CIFAR-100, Fashion-MNIST, Quickdraw, and SVHN.

I To create the meta-knowledge, 200 architectures per dataset are
choosen at random from the NASNet search space (i.e. 1000 unique
architectures) and train it for 100 epochs.

I Experiments are conducted in a leave-one-dataset-out cross-validation.
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Ranking Performance
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Random Search

Random Neural Architecture Search with Early Stopping.

I Regret: Difference of best solution and best solution without early
stopping.

I Time: GPU time in hours.

Method CIFAR-10 CIFAR-100 Fashion Quickdraw SVHN
Regr. Time Regr. Time Regr. Time Regr. Time Regr. Time

No Early Ter-
mination

0.00 1023 0.00 1021 0.00 1218 0.00 1045 0.00 1485

Domhan et al. 0.56 346 0.82 326 0.00 460 0.44 331 0.28 471
Hyperband 0.22 106 0.78 102 0.32 132 0.54 109 0.00 156
Baker et al. 0.00 89 0.00 77 0.00 129 0.00 107 0.00 241
Successive
Halving

0.62 62 0.00 54 0.18 70 0.40 60 0.28 88

Chandra-
shekaran

0.62 30 0.00 35 0.28 41 0.30 82 0.06 164

LCRankNet 0.22 20 0.00 11 0.10 19 0.00 28 0.10 74
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Component Analysis
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Conclusions

I Transfer learning for Neural Architecture Search has been explored in
various ways.
I By means of special neural architecture search methods,
I meta-learning,
I and early termination techniques for incremental model training.

I All imply that it can be used to significantly decrease the
computational effort for NAS.

I Yet, it is a relatively unexplored research topic.
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Final Conclusions

I A common search space for NAS.

I Various efficient optimizers based on parameter sharing and
differentiable architecture search.

I Discussion of several problems being faced with these very methods.

I A deep dive on transfer learning for NAS.
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Thank you for your attention.

Survey Paper: https://arxiv.org/abs/1905.01392
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