

Meta-Learning for Hyperparameter Optimization

Martin Wistuba Josif Grabocka

Amazon Web Services University of Freiburg

13 September 2023

1. Introduction

2. Basics

3. The Power of Transfer-Learning for HPO

4. Experimental Protocol and Meta-Features

5. Transfer-Learning Strategies for HPO

6. Conclusion

"Textbook" ML: A Simplified Skeleton

Data:

Training dataset with features x^{train} and target y^{train}

<u>Model</u>:

▶ Prediction model $f(x; \theta)$ with parameters $\theta \in \Theta$

Problem:

► Loss $\mathcal{L}(y^{\text{train}}, f(x^{\text{train}}))$ abbreviated as $\mathcal{L}^{\text{train}}(\theta)$

• Objective:
$$\theta^* := \underset{\theta \in \Theta}{\operatorname{arg min}} \mathcal{L}^{\operatorname{train}}(\theta)$$

"Real-world" ML: Lots of Hyperparameters

► The "textbook" simplified supervised learning definition is of little practical use.

- ▶ ML methods require several design choices before we can optimize the parameters.
 - Preprocessing
 - Data Augmentation
 - Model and Neural Architecture
 - Regularization
 - Optimization
- Entirety of design choices are called hyperparameters

Search Spaces of Hyperparameter Configurations

An example search space Λ :

Hyperparameter	Range	Scale	
Architecture	{ConvNext, ViT, EfficientNet}	Discrete	
Dropout	[0.0, 1.0]	Uniform	
Optimizer	{SGD, Adam, RMSProp}	Discrete	
Learning Rate	$\left[10^{-5}, 10^{0} ight]$	Log	

A configuration $\lambda \in \Lambda$ is an element of the Cartesian product of hyperparameter ranges, e.g.:

 $\lambda = [Arch.: ViT, Dropout : 0.2, Optim.: Adam, LR : 10^{-4}]$

Objective: How to find the optimal λ for a particular task?

Hyperparameter Optimization (HPO)

Hyperparameters $\lambda \in \Lambda$ where Λ is the design/search space.

- Effect: Parameters depend on hyperparameters θ_{λ}
- Goal: Find λ to minimize a validation loss $\mathcal{L}^{\mathsf{val}}(\theta_{\lambda})$

Hyperparameter optimization (HPO) problem:

$$egin{aligned} \lambda^* &:= rgmin_{\lambda \in \Lambda} & \mathcal{L}^{\mathsf{val}}\left(heta^*_\lambda
ight) \ & ext{s.t.} & heta^*_\lambda &:= rgmin_{ heta_\lambda \in \Theta} & \mathcal{L}^{\mathsf{train}}\left(heta_\lambda
ight) \end{aligned}$$

For the sake of brevity, $\mathcal{L}^{\mathsf{val}}(\theta_{\lambda}^{*})$ can be alternatively denoted as $\ell(\lambda)$.

Difficulty of HPO

▶ \mathcal{L}^{val} is non-convex

▶ \mathcal{L}^{val} is expensive

▶ \mathcal{L}^{val} is non-analytic

1. Introduction

2. Basics

2.1 Hyperparameter Optimization

- 2.2 Bayesian Optimization
- 2.3 Meta-Learning

3. The Power of Transfer-Learning for HPO

- 4. Experimental Protocol and Meta-Features
- 5. Transfer-Learning Strategies for HPO

1. Introduction

2. Basics

2.1 Hyperparameter Optimization

- 2.2 Bayesian Optimization
- 2.3 Meta-Learning

3. The Power of Transfer-Learning for HPO

- 4. Experimental Protocol and Meta-Features
- 5. Transfer-Learning Strategies for HPO

HPO as a sequential search

► HPO = sequential search

- Given evaluations $\{\lambda^{(t)}, \ell(\lambda^{(t)})\}_{t=1}^{T}$
- Which $\lambda^{(next)}$ to evaluate next?

• To explore, or to exploit, that is the question.

Flavors of HPO

Black-box

The only access to a function $\ell : \Lambda \to \mathbb{R}$ is by evaluating $\ell(\lambda)$ for any $\lambda \in \Lambda$.

► Gray-box

Access to a function $\ell : \Lambda \to \mathbb{R}$ is by partial (low-cost) evaluations $\ell(\lambda)_b$ at a budget b. In deep learning, additional access to model weights, layer activations, etc.

► White-Box:

In addition to the gray-box level of access, we can compute the gradients $\frac{\partial \ell(\lambda)}{\partial \lambda}$.

First-order optimization: Access to gradients

Standard optimization of analytic functions with off-the-shelf first-/second-order techniques.

Black-box HPO: No access to gradients

Black-box optimization of non-analytic functions through optimizable surrogates.

Gray-Box HPO

- Measure **approximately** $\ell(\lambda; "budget") \approx \ell(\lambda)$:
 - ► Train on a **subset** of the dataset
 - ► Train for **fewer** epochs
 - ► Train for **less** ensemble models
- Rule out configurations after low-budget evaluations

White-Box HPO

Update parameters θ and hyperparameters λ jointly [1]:

$$\theta^{(t)} \leftarrow u\left(\theta^{(t-1)}, \lambda^{(t)}\right) \text{ and } \lambda^{(t+1)} \leftarrow \lambda^{(t)} - \eta \frac{\partial \mathcal{L}^{\mathsf{val}}\left(\theta^{(t)}\right)}{\partial \lambda^{(t)}}$$

where:

$$\frac{\partial \mathcal{L}^{\mathsf{val}}\left(\boldsymbol{\theta}^{(t)}\right)}{\partial \boldsymbol{\lambda}^{(t)}} = \frac{\partial \mathcal{L}^{\mathsf{val}}\left(\boldsymbol{\theta}^{(t)}\right)}{\partial \boldsymbol{\theta}^{(t)}} \frac{\partial u\left(\boldsymbol{\theta}^{(t-1)},\boldsymbol{\lambda}^{(t)}\right)}{\partial \boldsymbol{\lambda}^{(t)}}$$

For instance, in the case where λ is the learning rate:

$$\frac{\partial u\left(\theta^{(t-1)},\lambda^{(t)}\right)}{\partial\lambda^{(t)}} = \frac{\partial \left(\theta^{(t-1)}-\lambda^{(t)}\frac{\partial \mathcal{L}^{\mathsf{train}}\left(\theta^{(t-1)}\right)}{\partial\theta^{(t-1)}}\right)}{\partial\lambda^{(t)}} = -\frac{\partial \mathcal{L}^{\mathsf{train}}\left(\theta^{(t-1)}\right)}{\partial\theta^{(t-1)}}$$

1. Introduction

2. Basics

2.1 Hyperparameter Optimization

2.2 Bayesian Optimization

2.3 Meta-Learning

3. The Power of Transfer-Learning for HPO

4. Experimental Protocol and Meta-Features

5. Transfer-Learning Strategies for HPO

Bayesian Optimization - Mechanism

Black-box policies for minimizing/maximizing functions $\ell(\lambda)$:

- Given $H := \left\{\lambda^{(i)}, \ell(\lambda^{(i)})\right\}_{i=1}^{n}$
- Evaluate $\lambda^{(next)}$

The acquisition function *a* promotes regions where the surrogate $\hat{\ell}$ has both a high predicted mean and a high variance.

Bayesian Optimization - Algorithm

Algorithm 1: Bayesian Optimization

Initial design $H := \left\{ \left(\lambda^{(i)}, \ell \left(\lambda^{(i)} \right) \right) \right\}_{i=1}^{n}$;

while still budget remaining do

Fit a probabilistic surrogate $\hat{\ell}$, e.g. surrogate $\hat{\ell} := \text{Gaussian-Process}(H)$;

Recommend $\lambda^{\text{next}} := \arg \max_{\lambda} a\left(\hat{\ell}(\lambda)\right)$, e.g. acquisition a = Expected-Improvement;

Evaluate $H \leftarrow H \cup \{(\lambda^{\text{next}}, \ell(\lambda^{\text{next}}))\}$ end

return $\lambda^* \leftarrow \arg \min_{(\lambda, \cdot) \in H} \ell(\lambda);$

Typical Acquisition: Expected Improvement

1. Introduction

2. Basics

2.1 Hyperparameter Optimization2.2 Bayesian Optimization

2.3 Meta-Learning

3. The Power of Transfer-Learning for HPO

4. Experimental Protocol and Meta-Features

5. Transfer-Learning Strategies for HPO

Model-Agnostic Meta-Learning

universität aws freiburg

- Model learns from all the tasks.
- Learn a representation that requires only few steps to the optimal representation for each task
- Performs well for few-shot learning problems

Chelsea Finn, Pieter Abbeel, and Sergey Levine. "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks". In: ICML. vol. 70. Proceedings of Machine Learning Research. PMLR, 2017, pp. 1126-1135 Martin Wistuba, Josif Grabocka, Amazon Web Services, University of Freiburg - 13 September 2023 15 / 66

MAML Algorithm

Algorithm 2: Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: β , γ : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: $\theta'_i = \theta \beta \nabla_{\theta} \mathcal{L}_i(\ell_{\theta})$
- 6: $\theta \leftarrow \theta \gamma \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_i(\ell_{\theta'_i})$

1. Introduction

2. Basics

3. The Power of Transfer-Learning for HPO

4. Experimental Protocol and Meta-Features

5. Transfer-Learning Strategies for HPO

6. Conclusion

Transfer Learning helps HPO

Response function of different datasets can look very similar.

Objective of Transfer Learning in HPO

In transfer learning for HPO, we have access to a history of HPO runs (a meta-dataset),

$$\mathcal{H} = \left\{ \left(\lambda^{(1)}, \ell^{(1)} \left(\lambda^{(1)} \right) \right), \dots, \left(\lambda^{(n_1)}, \ell^{(1)} \left(\lambda^{(n_1)} \right) \right), \dots, \left(\lambda^{(n_M)}, \ell^{(M)} \left(\lambda^{(n_M)} \right) \right) \right\}, \dots, \left(\lambda^{(n_M)}, \ell^{(M)} \left(\lambda^{(n_M)} \right) \right) \right\},$$

for a set of datasets $\{D_1, \ldots, D_M\}$ with respective response functions $\{\ell^{(1)}, \ldots, \ell^{(M)}\}$.

Objective: Use \mathcal{H} to find good λ for a new $\ell^{(M+1)}$ faster.

Conceptual Illustration: Meta-Learned Surrogates

Meta-learning a surrogate on source tasks (above) helps HPO on a target task (below):

Transfer Learning: Fewer HPO Trials

Martin Wistuba and Josif Grabocka. "Few-Shot Bayesian Optimization with Deep Kernel Surrogates". In: ICLR. OpenReview.net, 2021

1. Introduction

2. Basics

3. The Power of Transfer-Learning for HPO

4. Experimental Protocol and Meta-Features

- 4.1 Experimental Protocol
- 4.2 Meta-Features

5. Transfer-Learning Strategies for HPO

6. Conclusion

4. Experimental Protocol and Meta-Features **Experimental Protocol** 4.1

4.2 Meta-Features

Evaluation Metrics (1/3)

- Evaluation is done on multiple benchmarks, each having many different tasks.
- ▶ Presenting results per task is infeasible, aggregation of results is required.
- ► Aggregation is non-trivial.
 - Do you account only for performance after a fixed budget or do you also consider the speed of progress?
 - ► How do you define a fixed budget for datasets of with different sizes?
 - ► How do you account for different scales in different datasets?

Evaluation Metrics (2/3)

► Average Regret

$$\frac{1}{M}\sum_{i=1}^{M}\ell^{(i)}(\lambda_{\mathsf{best}}^{(i)})-\ell_{\mathsf{min}}^{(i)}$$

Evaluation Metrics (2/3)

Average Regret

$$\frac{1}{M}\sum_{i=1}^{M}\ell^{(i)}(\lambda_{\mathsf{best}}^{(i)}) - \ell_{\mathsf{min}}^{(i)}$$

Normalized Average Regret

$$\frac{1}{M}\sum_{i=1}^{M}\frac{\ell^{(i)}\left(\lambda_{\text{best}}^{(i)}\right)-\ell_{\min}^{(i)}}{\ell_{\max}^{(i)}-\ell_{\min}^{(i)}}$$

Evaluation Metrics (3/3)

► Average Rank

$$\frac{1}{M}\sum_{i=1}^{M}\mathsf{rank}^{(i)}\left(\lambda_{\mathsf{best}}^{(i)}\right)$$

where rank⁽ⁱ⁾ $\left(\lambda_{\text{best}}^{(i)}\right)$ is the rank obtained by the method compared to other methods.

Evaluation Metrics (3/3)

► Average Rank

$$rac{1}{M}\sum_{i=1}^{M} \mathrm{rank}^{(i)}\left(\lambda_{\mathrm{best}}^{(i)}
ight)$$

where rank⁽ⁱ⁾ $\left(\lambda_{\text{best}}^{(i)}\right)$ is the rank obtained by the method compared to other methods. Area under any of the previous metric curves.

- ► All previous metrics can only be reported for a given budget.
- ► The sum of a metric at every given budget will yield a single value.

Evaluation Metrics - Example

Dataset	Opt1	Opt2	Opt3	$\ell_{\min}^{(t)}$	$\ell_{\sf max}^{(t)}$
Dataset 1	70%	65%	80%	60%	80%
Dataset 2	60%	59%	58%	20%	65%
Dataset 3	98%	99%	97.9%	97%	99%

Evaluation Metrics - Example

Dataset	Opt1	Opt2	Opt3	$\ell_{\min}^{(t)}$	$\ell_{\sf max}^{(t)}$
Dataset 1	70%	65%	80%	60%	80%
Dataset 2	60%	59%	58%	20%	65%
Dataset 3	98%	99%	97.9%	97%	99%
Average Regret	17%	15.3%	19.6%		
Evaluation Metrics - Example

Dataset	Opt1	Opt2	Opt3	$\ell_{\min}^{(t)}$	$\ell_{\sf max}^{(t)}$
Dataset 1 Dataset 2 Dataset 3	70% 60% 98%	65% 59% 99%	80% 58% 97.9%	60% 20% 97%	80% 65% 99%
Average Regret Normalized Average Regret	17% 62.9%	15.3% 70.6%	19.6% 76.5%		

Evaluation Metrics - Example

Dataset	Opt1	Opt2	Opt3	$\ell_{\min}^{(t)}$	$\ell_{\sf max}^{(t)}$
Dataset 1	70%	65%	80%	60%	80%
Dataset 2	60%	59%	58%	20%	65%
Dataset 3	98%	99%	97.9%	97%	99%
Average Regret	17%	15.3%	19.6%		
Normalized Average Regret	62.9%	70.6%	76.5%		
Average Rank	2.3	2.0	1.7		

Evaluation Metrics - Summary

- ► What is the right evaluation metric?
 - Every single one has their own problems.
 - Evaluate with respect to all.
 - If they all agree on a best method, that's probably the best one.
 - If they disagree, results are inconclusive.
 - Unclear: Performance differences at different optimization budgets.

Benchmarks Overview

Benchmark	#Evals	#Datasets	#HPs	#Fidelities	Comments
LCBench [19]	70K	35	7	50	MLP - architecture and HPs
WEKA [14]	1.3M	59	1-7	1	several search spaces
HPO-B v1 [11]	6.4M	196	1-53	1	OpenML benchmark
HPO-B v2 [11]	6.3M	101	2-18	1	for cross-search space HPO
HPOBench [3]	50K	1-20	2-26	varies	trees or epochs as fidelity
TaskSet [10]	29M	1162	1-10	varies	optimizer HPs for different
					NNs

Outline

4. Experimental Protocol and Meta-Features 4.1 Experimental Protocol

4.2 Meta-Features

Meta-Features

- Meta-features are describing properties of the dataset.
 - Desired property: iff the meta-features between two datasets are similar, the best hyperparameter configurations are similar.

We categorize them according to how they are generated:

- Feature Engineering: All meta-features that are created based on human-defined operations.
 - Classical approach
 - Big variety of meta-features proposed in the literature
- **Feature Learning:** Meta-features are learned directly from the data.

Meta-Features - Engineering

- **Simple:** Such as dataset size, number of features, etc.
- **Statistical:** Such as kurtosis, skewness, etc.
- ▶ Information Theoretic: Such as normalized class entropy, mutual information, etc.
- Model-Based: Features are extracted from a simple model trained on the data
 Examples: number of leaves in a decision tree trained without pruning
- ► Landmarking: Performance metrics of simple learners. (e.g. Naive Bayes accuracy)

Matthias Reif et al. "Automatic classifier selection for non-experts". In: Pattern Anal. Appl. 17.1 (2014), pp. 83–96

Meta-Features

Meta-Features - Learning

In meta-feature learning, a function $\phi : \mathcal{D} \to \mathbb{R}^k$ is learned, which extracts k-dimensional meta-features from a given dataset $D \in \mathcal{D}$.

The function φ is parameterized and its parameters are learned from datasets and their similarity scores.

Noteworthy meta-feature learning strategies:

- ► Tabular Data: Dataset2Vec [7].
- ▶ Image Data: Set transformer [9].

Outline

1. Introduction

2. Basics

3. The Power of Transfer-Learning for HPO

4. Experimental Protocol and Meta-Features

5. Transfer-Learning Strategies for HPO

- 5.1 Transfer by Initial Design
- 5.2 Transfer by Surrogates
- 5.3 Transfer by Acquisition Function

Transfer modalities for HPO with Bayesian Optimization and interstation freiburg

Transfer by Initial Design

Outline

4. Experimental Protocol and Meta-Features

5. Transfer-Learning Strategies for HPO Transfer by Initial Design 5.1

- 5.2 Transfer by Surrogates
- 5.3 Transfer by Acquisition Function

Transfer by Initialization

Basic idea: Start with configurations that did well in the past. Then, continue with an arbitrary HPO technique.

Advantages

- Works very well in practice.
- ► Transparent method, easy to understand.
- ► Works with most HPO methods.
- ► Typically easy to implement.
- ► No additional overhead introduced.
- Can be shared and updated easily.

Disadvantages

- ► Initialization length might be a critical hyperparameter.
- Does not adapt, might struggle with negative transfer.

Formal Problem Definition

A hyperparameter optimization initialization is a sequence of hyperparameter configurations $\mathcal{I} = (\lambda_1 \dots \lambda_n)$ which minimizes

$$\mathcal{L}(\mathcal{D},\mathcal{I}) = \sum_{D\in\mathcal{D}} \min\{\ell_D(\lambda_i) \mid i \in \{1...n\}\} .^1$$

In words: At least one configuration is a good configuration for any dataset we have seen so far.

Desired Properties

- ▶ No redundancies: There should be no two configurations that are very similar.
- **Coverage:** The entire search space should be covered.
- **Good performance:** The initialization should already yield good results.

¹For simplicity, we ignore that ℓ_D may require normalization.

Nearest-Neighbor Initialization (1/2)

- 1. Given is a set of datasets $\{D_1, \ldots, D_M\}$ and corresponding best hyperparameter configurations $\{\lambda_1, \ldots, \lambda_M\}$.
- 2. Measure the similarity between each dataset and the new dataset D_{new} with some distance function d.
- 3. Select the *n* configurations from the best configurations corresponding to the datasets with the highest similarity.

Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. "Initializing Bayesian Hyperparameter Optimization via Meta-Learning". In: AAAI. AAAI Press, 2015, pp. 1128–1135

Nearest-Neighbor Initialization (2/2)

- ▶ The distance between two datasets is non-trivial to compute.
- ► Common choice: Euclidean distance between meta-features.

Problems

- ▶ Possible redundancies: Similar datasets may have similar best configurations.
- **Dataset similarity:** With wrong similarities, we may use a bad initialization.

Greedy Initialization (1/2)

Greedy initialization uses a greedy selection algorithm to minimize

$$\mathcal{L}(\mathcal{D},\mathcal{I}) = \sum_{D\in\mathcal{D}} \min\{\ell_D(\lambda_i) \mid i \in \{1\dots n\}\}.$$

- 1. Create an empty list $\mathcal{I} = \emptyset$.
- 2. Add the element $\lambda^{\star} \in \Lambda$ to \mathcal{I} , where

$$\lambda^{\star} = \operatorname*{arg\,min}_{\lambda \in \Lambda} \mathcal{L} \left(\mathcal{D}, \mathcal{I} \cup \{\lambda\} \right) \;,$$

until $|\mathcal{I}| = I$

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. "Sequential Model-Free Hyperparameter Tuning". In: *ICDM*. IEEE Computer Society, 2015, pp. 1033–1038

Greedy Initialization (2/2)

- ► In the optimal case, a set of configurations is evaluated on all datasets.
- If this is not possible, use surrogate models $\hat{\ell}_D$ to impute the missing values.

Advantages

- **Low redundancies:** Configurations are chosen to complement each other.
- Robust: If a new set is similar to any previously dataset, the initialization sequence contains at least one good configuration.

Disadvantages

- ► Greedy selection is an approximation.
- ► Can depend on quality of surrogates.

Initialization with Evolutionary Algorithms

- Alternative to the greedy selection that will find solutions closer to the optimum.
- Same advantages and disadvantages.
- 1. Initialize \mathcal{I} with configurations that performed best on some random datasets.
- 2. Update \mathcal{I} with an evolutionary algorithm.

Figure 1: Examples for the mutation and crossover operation with I = 3.

Martin Wistuba and Josif Grabocka. "Few-Shot Bayesian Optimization with Deep Kernel Surrogates". In: ICLR. OpenReview.net. 2021

Initialization Learning (1/3)

In initialization learning our problem is solved via gradient-based methods.

$$\mathcal{L}(\mathcal{D},\mathcal{I}) = \sum_{D\in\mathcal{D}} \min\{\ell_D(\lambda_i) \mid i \in \{1...n\}\}.$$

Problem: This loss is not differentiable because

- 1. the minimum function is not differentiable and
- 2. ℓ_D is only partially observed and the computation for arbitrary λ is expensive.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. "Learning hyperparameter optimization initializations". In: DSAA. IEEE, 2015, pp. 1–10

Differentiable Meta-Loss

Problem 1: Minimum function is not differentiable.

► Replace it with the soft-minimum function.

$$\min \left\{ \lambda_1, \dots, \lambda_n \right\} \quad \approx \quad \sum_{i=1}^n \lambda_i \sigma \left(\lambda \right)_i$$

where

$$\sigma\left(\left(\lambda_1,\ldots,\lambda_n\right)^{\mathcal{T}}\right)_i = \frac{e^{\beta\lambda_i}}{\sum_{j=1}^n e^{\beta\lambda_j}}$$

Transfer by Initial Design

Differentiable Meta-Loss

Problem 2: ℓ_D is only partially observed and the computation for arbitrary λ is expensive.

▶ Replace ℓ_D with a differentiable surrogate models $\hat{\ell}_D$ that is trained on all available observations on D.

Thus, the final, differentiable meta-loss is

$$\mathcal{L}(\mathcal{D},\mathcal{I}) = \frac{1}{|\mathcal{D}|} \sum_{D \in \mathcal{D}} \sum_{i=1}^{n} \sigma_{D,i} \hat{\ell}_{D}(\lambda_{i})$$

Initialization Learning Algorithm

1. Initialize \mathcal{I} with configurations that performed best on some random datasets.

2. Update \mathcal{I} with gradient descent

$$\frac{\partial}{\partial\lambda_{I,j}}\mathcal{L}\left(\mathcal{D},\mathcal{I}\right) = \frac{1}{|\mathcal{D}|}\sum_{D\in\mathcal{D}}\sigma_{D,I}\cdot\left(\frac{\partial}{\partial\lambda_{I,j}}\hat{\ell}_{D}\left(\lambda_{I}\right)\right)\cdot\left(\beta\left(1-\sigma_{D,I}\right)\hat{\ell}_{D}\left(\lambda_{I}\right)+1\right)$$

Outline

1. Introduction

2. Basics

3. The Power of Transfer-Learning for HPO

4. Experimental Protocol and Meta-Features

5. Transfer-Learning Strategies for HPO

5.1 Transfer by Initial Design

5.2 Transfer by Surrogates

5.3 Transfer by Acquisition Function

Transfer by Surrogates

Basic idea: Meta-learn a probabilistic surrogate from the evaluations of a meta-dataset

Advantages

- Leads to state-of-the-art results
- Easily accommodates meta-features as auxiliary surrogate features
- ► Can be extended to zero-shot HPO without an initial design

Disadvantages

- Requires implementing and running a meta-learning procedure for the surrogate parameters
- ▶ Requires a careful selection of hyper-hyper-parameters for the meta-learning procedure

Transfer by Surrogates

Two-stage Surrogate Transfer

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. "Two-Stage Transfer Surrogate Model For Automatic Hyperparameter Optimization". In: European Conference on Machine Learning and Knowledge Discoverv in Databases - Volume 9851. ECML PKDD 2016. Riva del Garda, Italy: Springer-Verlag, 2016, Martin Wistuba, Josif Grabocka, Amazon Web Services, University of Freiburg - 13 September 2023

Few-Shot Bayesian Optimization (FSBO)

- Meta-dataset of evaluations $M := \bigcup_{m=1}^{M} \{\lambda_i, \ell^{(m)}(\lambda_i)\}_{i=1}^n$
- Meta-learn a parametric probabilistic surrogate $\ell(\lambda) \approx \hat{\ell}(\lambda; \psi) + \epsilon$ to approximate:

$$\psi^* := rg\max_{\psi} \sum_{m=1}^{M} \sum_{i=1}^{n} \log p\left(\ell^{(m)}\left(\lambda_i\right) \mid \lambda_i, \psi\right)$$

• On a new task: Initialize Bayesian optimization with the meta-learned surrogate $\hat{\ell}(\lambda; \psi^*)$ Martin Wistuba and Josif Grabocka. "Few-Shot Bayesian Optimization with Deep Kernel Surrogates". In: ICLR. OpenReview.net. 2021

FSBO - Performance

universität Novel Paradigm: Surrogate fitting as Learning-to-rank aws freiburg

- A good surrogate when $\arg \min_{\lambda} \hat{\ell}(\lambda) \approx \arg \min_{\lambda} \ell(\lambda)$
- Rank preservation is more important than fitness ►

Deep Ranking Ensembles (DRE)

- Ground-truth rank $\pi(i) = \sum_{k=1}^{n} \mathbb{1}_{\ell(\lambda_k) \leq \ell(\lambda_i)}$
- We learn a ranker $r : \Lambda \to \mathbb{R}$ to approximate the true ranks.
- ► Optimize the ranker via a list-wise learning-to-rank loss:

$$\underset{\psi}{\arg\min}\sum_{i=1}^{n}w\left(\pi(i)\right)\frac{e^{r\left(\lambda_{\pi(i)};\psi\right)}}{\sum_{j=k}^{n}e^{r\left(\lambda_{\pi(j)};\psi\right)}}, \quad w\left(\pi(i)\right)=\frac{1}{\log\left(\pi(i)+1\right)}$$

- Create a probabilistic ranker via ensembling
- Meta-learn the ranking ensemble from a meta-dataset

Abdus Salam Khazi, Sebastian Pineda Arango, and Josif Grabocka. "Deep Ranking Ensembles for Hyperparameter Optimization". In: *The Eleventh International Conference on Learning Representations*. 2023 Martin Wistuba, Josif Grabocka, Amazon Web Services, University of Freiburg - 13 September 2023

Ranking Ensembles - Impact of Transfer Learning

universität

freiburg

aws

Ranking Ensembles - Performance

Outline

1. Introduction

- 2. Basics
- 3. The Power of Transfer-Learning for HPO
- 4. Experimental Protocol and Meta-Features
- 5. Transfer-Learning Strategies for HPO
- 5.1 Transfer by Initial Design
- 5.2 Transfer by Surrogates
- 5.3 Transfer by Acquisition Function

Transfer by Acquisition Function

Definition

An acquisition function is a mapping $a(\lambda, \mu(\lambda), \sigma(\lambda), \ell^{\text{best}})$ that measures the expected utility of a configuration λ .

We discuss

- Transfer with true acquisition functions
 - Acquisition functions according to above definition but which use transfer learning.
- Transfer with policies
 - Policies allow for sampling candidates. They do not evaluate their utility.

Transfer Acquisition Function

TAF is an acquisition function that combines EI with the predicted performance on other datasets.

$$\mathsf{a}(\lambda) = \frac{\mathsf{w}_{M+1} \mathrm{E}[\mathrm{I}_{M+1}(\lambda)] + \sum_{i=1}^{M} \mathsf{w}_i \mathrm{I}_i(\lambda)}{\sum_{i=1}^{M+1} \mathsf{w}_i}$$

with

$$\mathrm{I}_i(\lambda) = \max\left\{\ell_{\min}^{(i)} - \hat{\ell}^{(i)}(\lambda), 0
ight\}$$

•
$$\ell_{\min}^{(i)}$$
 - Best value observed on D_i .

- ▶ $\hat{\ell}^{(i)}$ Surrogate for D_i .
- w_i chosen as in TST.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. "Scalable Gaussian process-based transfer surrogates for hyperparameter optimization". In: *Mach. Learn.* 107.1 (2018), pp. 43–78

Transfer Acquisition Function - Effects

$$a(\lambda) = \frac{w_{M+1} \mathbf{E}[\mathbf{I}_{M+1}(\lambda)] + \sum_{i=1}^{M} w_i \mathbf{I}_i(\lambda)}{\sum_{i=1}^{M+1} w_i}$$

Effects

- Different scales between datasets are no longer a problem.
- Diminishing effect of other datasets over time. Avoids problems with negative transfer.
- Early phase: High uncertainty on $\ell^{(M+1)}$, search mostly guided by other datasets.
- Late phase: No further improvements on other datasets, converges to EI.

TAF - Empirical Results

Transfer by Acquisition Function

Few-Shot Acquisition Function

FSAF combines meta-learning and Deep Q-Learning to learn an acquisition function:

- State representation: $(\mu(\lambda), \sigma(\lambda), \ell^{\text{best}}, t/T)$
- ► Tackle overfitting via Bayesian DQL:

$$\min_{\boldsymbol{q}(\theta)} \left\{ \mathbb{E}_{\theta \sim \boldsymbol{q}(\theta)} \left[\boldsymbol{C}(\theta) \right] + \alpha D_{\mathsf{KL}}(\boldsymbol{q} \| \boldsymbol{q}_0) \right\}$$

Use a demo policy (EI) as prior

$$q_0(heta) \propto \exp(\delta(\pi_ heta,\pi_D))$$

Bayesian MAML loss as meta-loss

Bing-Jing Hsieh, Ping-Chun Hsieh, and Xi Liu. "Reinforced Few-Shot Acquisition Function Learning for Bayesian Optimization". In: NeurIPS. 2021, pp. 7718-7731

FSAF - Empirical Results

One task is used for few-shot adaptation, remaining serve for testing purposes.

OptFormer

OptFormer uses a transformer architecture to learn across search spaces, and is both a surrogate model and acquisition function at the same time.

- ▶ Metadata: all information related to the task such as objective, search space, algorithm.
- ► At inference time: next token prediction.

Yutian Chen et al. "Towards Learning Universal Hyperparameter Optimizers with Transformers". In: NeurIPS. 2022

OptFormer - Training

- Optformer learns from data that was created by other optimization policies π_i .
- Objective: Learn a policy π_{prior} that simply clones the behavior of other optimizers.
- Auxiliary task: Predict the hyperparameter response.

OptFormer - Beyond Imitation

- ► OptFormer: Prior policy
 - Sample from the prior policy π_{prior} .

- ► OptFormer + Acquisition Function
 - Sample multiple candidates from the prior policy $\lambda^{(i)} \sim \pi_{\text{prior}}$.
 - Predict their performance with the OptFormer surrogate model.
 - Evaluate the candidate with highest measured utility according to El.

OptFormer - Imitation Performance

Changing the algorithm in the metadata allows to imitate different optimizers.

OptFormer - Results

 $\pi_{\rm prior}$ allows for successfully pruning the candidate space.

Outline

1. Introduction

2. Basics

3. The Power of Transfer-Learning for HPO

4. Experimental Protocol and Meta-Features

5. Transfer-Learning Strategies for HPO

6. Conclusion

Conclusion

- ► Introduction to (Transfer) HPO
 - ► Flavors of HPO (black-box, gray-box, white-box)
 - Motivation for transferring knowledge in HPO
 - Meta-Features
 - Evaluation Metrics
- Overview over Transfer Methods
 - Initialization
 - Surrogate Models
 - Acquisition Functions

Thank you for your attention.

Questions? Comments?

References I

- [1] Atilim Gunes Baydin et al. "Online Learning Rate Adaptation with Hypergradient Descent". In: International Conference on Learning Representations. 2018.
- [2] Yutian Chen et al. "Towards Learning Universal Hyperparameter Optimizers with Transformers". In: *NeurIPS*. 2022.
- [3] Katharina Eggensperger et al. "HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO". In: *NeurIPS Datasets and Benchmarks*. 2021.
- [4] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. "Initializing Bayesian Hyperparameter Optimization via Meta-Learning". In: AAAI. AAAI Press, 2015, pp. 1128–1135.
- [5] Chelsea Finn, Pieter Abbeel, and Sergey Levine. "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks". In: *ICML*. Vol. 70. Proceedings of Machine Learning Research. PMLR, 2017, pp. 1126–1135.

References II

- [6] Bing-Jing Hsieh, Ping-Chun Hsieh, and Xi Liu. "Reinforced Few-Shot Acquisition Function Learning for Bayesian Optimization". In: *NeurIPS*. 2021, pp. 7718–7731.
- [7] Hadi S. Jomaa, Lars Schmidt-Thieme, and Josif Grabocka. "Dataset2Vec: learning dataset meta-features". In: Data Min. Knowl. Discov. 35.3 (2021), pp. 964–985.
- [8] Abdus Salam Khazi, Sebastian Pineda Arango, and Josif Grabocka. "Deep Ranking Ensembles for Hyperparameter Optimization". In: The Eleventh International Conference on Learning Representations. 2023.
- [9] Juho Lee et al. "Set transformer: A framework for attention-based permutation-invariant neural networks". In: International Conference on Machine Learning. PMLR. 2019, pp. 3744–3753.
- [10] Luke Metz et al. "Using a thousand optimization tasks to learn hyperparameter search strategies". In: *CoRR* abs/2002.11887 (2020).

References III

- [11] Sebastian Pineda-Arango et al. "HPO-B: A Large-Scale Reproducible Benchmark for Black-Box HPO based on OpenML". In: *NeurIPS Datasets and Benchmarks*. 2021.
- [12] Matthias Reif et al. "Automatic classifier selection for non-experts". In: Pattern Anal. Appl. 17.1 (2014), pp. 83–96.
- [13] Martin Wistuba and Josif Grabocka. "Few-Shot Bayesian Optimization with Deep Kernel Surrogates". In: *ICLR*. OpenReview.net, 2021.
- [14] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. "Hyperparameter Search Space Pruning - A New Component for Sequential Model-Based Hyperparameter Optimization". In: ECML/PKDD (2). Vol. 9285. Lecture Notes in Computer Science. Springer, 2015, pp. 104–119.
- [15] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. "Learning hyperparameter optimization initializations". In: *DSAA*. IEEE, 2015, pp. 1–10.

References IV

- [16] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. "Scalable Gaussian process-based transfer surrogates for hyperparameter optimization". In: *Mach. Learn.* 107.1 (2018), pp. 43–78.
- [17] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. "Sequential Model-Free Hyperparameter Tuning". In: *ICDM*. IEEE Computer Society, 2015, pp. 1033–1038.
- [18] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. "Two-Stage Transfer Surrogate Model For Automatic Hyperparameter Optimization". In: European Conference on Machine Learning and Knowledge Discovery in Databases - Volume 9851. ECML PKDD 2016. Riva del Garda, Italy: Springer-Verlag, 2016, pp. 199–214.
- [19] Lucas Zimmer, Marius Lindauer, and Frank Hutter. "Auto-Pytorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL". In: IEEE Trans. Pattern Anal. Mach. Intell. 43.9 (2021), pp. 3079–3090.